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Abstract. We propose quantum mechanics of smeared particles that account for the delocalization
of a particle defined via its Compton wavelength. The Hilbert space representation theory of
such quantum mechanics is presented and its invariance under spatial translations and rotations is
examined. The quantum mechanics of smeared particles is then applied to two paradigm examples,
namely, the smeared harmonic oscillator and the Yukawa potential. In the second example, we
theoretically predict the phenomenological coupling constant of the ω meson, which mediates the
short range and repulsive nucleon force, as well as the repulsive core radius.

1. Introduction

The representation of a particle as an idealized point has long been used in physics. In fact, this
representation is central to classical mechanics and serves us well even in quantum mechanics.
In this paper we adopt a viewpoint in which the nonlocality or the smearing of a particle
is taken into consideration thereby treating the point particle as a smeared particle. Such a
treatment becomes important and necessary when the confines of the quantum system in which
the particle is placed become comparable to the smearing of the particle. The smearing of a
particle is quantified via its Compton wavelength which can be defined as the lower limit on
how well a particle can be localized. In nonrelativistic quantum mechanics, the lower limit is
zero since we admit position eigenkets |x〉. But in reality, as we try to locate the particle with
greater accuracy, we use more energetic probes, say photons to be specific. To locate a particle
to some �x we need a photon of momentum

�p ≈ h̄

�x
. (1.1)

The corresponding energy of the photon is

�E ≈ h̄c

�x
. (1.2)

If this energy exceeds twice the rest energy of the particle, relativity allows the production of
a particle–antiparticle pair in the measurement process. So we demand

h̄c

�x
� 2mc2 or �x � h̄

2mc
≈ h̄

mc
. (1.3)

Any attempt to further localize the particle will lead to pair creation and we will have three (or
more) particles instead of the one we started to locate. Therefore, the Compton wavelength
of a particle measures the distance over which quantum effects can persist. The point-particle
approximation used in nonrelativistic quantum mechanics suffices to describe the dynamics
since the confines of the quantum systems under consideration are much larger than the
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smearing of the confined particles. For example, in the analysis of the hydrogen atom, the
smearing of the electron is α times smaller than the size of the atom a0:

h̄/mc

a0
= α ≈ 1

137
. (1.4)

Thus, in the case of the hydrogen atom and in general, for the quantum theory of atoms, the
quantum mechanics of point particles gives an accurate description.

In this paper we develop the Hilbert space representation theory of the quantum mechanics
of smeared particles. We use this representation to analyse two paradigm examples: the
smeared harmonic oscillator and the Yukawa potential. In the second example, the quantum
mechanics of smeared particles enables us to predict the phenomenological coupling constant
of the ω meson as well as the radius of the repulsive nucleon core.

2. Quantum mechanics of smeared particles

We have established the necessity for taking into consideration the nonzero smearing of a
particle. In order to incorporate the smearing of a particle into our dynamics we introduce
the following representation for position and momentum in one dimension in units where
h̄ = c = 1. For position space,

Xs = (Xe−P 2/m2
) → (xe−P 2/m2

)

P → −i
d

dx
[Xs, P ] = ie−P 2/m2

(2.1)

and for momentum space,

Xs = e−P 2/2m2
Xe−P 2/2m2 → ie−P 2/2m2 d

dp
e−P 2/2m2

P → p

[Xs, P ] = ie−p2/m2

(2.2)

where (AB) ≡ (AB + BA)/2. Symmetrization has also been employed in the momentum
space representation in order to preserve the Hermiticity of the noncommuting smeared position
operatorXs. In contradistinction to the quantum mechanics of point particles where the position
operator has a smooth coordinate representation consisting of a sequence of points, the smeared
position operator is convolved with a Gaussian in momentum space which has as its width the
Compton wavelength 1/m. The convolution with the Gaussian has the effect of smearing out
these points, and in the limit as the Compton wavelength vanishes, we recover the standard
operator assignments of ordinary quantum mechanics. For simplicity, we consider the effect
of the smeared position operator Xs on an acceptable wavefunction in position space, that is,
one which is square integrable and has the right behaviour at infinity:

Xsψ(x) = (xe−P 2/m2
)ψ(x)

= m

4
√
π

[ ∫ ∞

−∞
dλ xeiPλ−m2λ2/4ψ(x) +

∫ ∞

−∞
dλ eiPλ−m2λ2/4[xψ(x)]

]

= m

2
√
π

∫ ∞

−∞
dλ

(
x +

λ

2

)
ψ(x + λ)e−m2λ2/4. (2.3)

The translation of ψ(x) by λ and the subsequent integration over all possible values of λ
weighted by a Gaussian measure has the effect of smearing out the position. As an example,
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consider the effect of the smeared position operator on the usual position coordinate x. After
evaluating the integral in equation (2.3) we obtain

Xsx = x2 +
1

m2
. (2.4)

We observe that the smeared position operator multiplies the usual position by x (as does the
ordinary position operator X) but there is an additional constant term which depends on the
Compton wavelength 1/m. The curve defined by Xx is the parabola x2 whereas the curve
defined by Xsx is the shifted parabola x2 + 1/m2. The region in between these two curves is
the indeterminate or smeared region. As the Compton wavelength goes to zero, the two curves
become identical, and the smearing vanishes. Physically, we can interpret the smearing of the
position coordinate by saying that the smearing operator encodes the Compton wavelength of a
particle which in turn represents the lower limit on how well the particle can be localized. The
commutation relation obeyed by Xs and P is manifestly noncanonical and does not depend
on the representation. A direct consequence of this commutation relation is the uncertainty
relation

�Xs�P � 1
2 |〈e−P 2/m2〉|. (2.5)

Now, for any two observables A and B which satisfy [A,B]|ψ〉 = 0 for some nontrivial |ψ〉,
with uncertainties �A and �B such that |�A/〈A〉| � 1 and |�B/〈B〉| � 1, we have the
relation

�((AB)) = |〈A〉|�B + |〈B〉|�A (2.6)

where again (AB) ≡ (AB + BA)/2. If the above conditions are satisfied for any two
observables, this relation follows directly from the theory of uncertainty propagation. For
the special case [A,B] = 0 we say that A and B are compatible variables. We observe that
whenever simultaneous eigenkets exist

〈AB〉 =
∫

da db P (ab)ab =
∫

da db P (a)P (b)ab

= 〈A〉〈B〉 (2.7)

where P(ab) = |〈ab|ψ〉|2 and the proof of equation (2.6) follows. In our case,

[X, e−P 2/m2
]|ψ〉 = 0 only if |ψ〉 = constant. (2.8)

Hence, there exists at least one nontrivial simultaneous eigenket for which [X, e−P 2/m2
] has a

zero eigenvalue. We can always choose this eigenket to establish the validity of equation (2.6)
for our operators X and e−P 2/m2

along the lines shown above. As a consequence, we obtain
the modified uncertainty principle (reinserting h̄ for clarity)

�X�P � h̄

2
+

2|〈X〉||〈P 〉|
m2

(�P )2. (2.9)

The uncertainty product goes up because of the smearing we have introduced in the position.
Consequently, there exists a minimal uncertainty in position given by

�X0 = 2

m

√
|〈X〉||〈P 〉|h̄. (2.10)

The existence of minimal uncertainties and their consequences for structure were first examined
by Kempf, albeit in a different context [1,2]. If we view the uncertainty product as a measure
of the cell volume of phase space we observe that quantized phase space acquires an added
smearing and the cell volume no longer has a uniform value equal to the Planck constant.
Thus, by introducing these representations for the smeared position we are able to quantify
and characterize the delocalization of a particle. We now proceed to formulate the Hilbert
space representation theory of these operators.
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3. Hilbert space representation

The smeared position operatorXs and the momentum operatorP satisfy the uncertainty relation
equation (2.5). This relation does not imply a minimal uncertainty in the smeared position or
the momentum. As a consequence, the eigenstates of the self-adjoint smeared position and
momentum operators can be approximated to arbitrary precision by sequences |ψn〉 of physical
states of increasing localization in position or momentum space:

lim
n→∞�Xs|ψn〉 = 0 or lim

n→∞�P|ψn〉 = 0. (3.1)

Hence, the smeared position and momentum operators admit a continuous position or
momentum space representation in the Hilbert space. Since the momentum operator is
identical to the one used in ordinary quantum mechanics it has the usual orthogonal plane
wave eigenstates. The eigenvalue problem of the smeared position operator

Xsψ = λψ (3.2)

can be written in the momentum basis (which we choose for convenience) as

e−p2/2m2 d

dp
(e−p2/2m2

ψ) = −iλψ. (3.3)

Defining the function φ = e−p2/m2
ψ and introducing the measure transformation dr =

ep
2/m2

dp we obtain the eigensolutions

ψ(p) = 1√
2π

ep
2/2m2+iλr (3.4)

where freedom in scale has been used to normalize the solution. The eigenfunctions are
orthogonal with respect to the transformed measure L2(e−p2/m2

dr) because

〈ψλ(p)|ψλ′(p)〉 = 1

2π

∫ ∞

−∞
ei(λ−λ′)r dr = δ(λ− λ′). (3.5)

The inner product 〈ψλ(p)|ψλ′(p)〉 is divergent in the space L2(dp) but is equal to the Dirac
delta function in the spaceL2(e−p2/m2

dr). Asp ranges from −∞ to ∞, the volume element dp,
under the measure transformation, is squeezed into a Gaussian width times the line element dr ,
and consequently the orthogonality of the smeared position eigenstates is preserved. We note
that had we tried to construct the formal position eigenstates (eigenstates ofX) we would have
had to sacrifice orthogonality due to the appearance of the minimal uncertainty in position. The
eigenfunctions of the smeared position operator in the position representation will be Fourier
transforms of the eigensolutions in the momentum representation since the Fourier transform
of an L2 function will be an L2 function in the same measure.

4. Translational and rotational invariance

We will now examine the behaviour of the quantum mechanics of smeared particles under
spatial translations and rotations and solve the eigenvalue problem of smeared angular
momentum.

4.1. Translational invariance

Under a translation of the coordinate x → x + ε we have the smeared translation

〈Xs〉 → 〈Xs〉 + ε〈e−P 2/m2〉
〈P 〉 → 〈P 〉. (4.1)



Quantum mechanics of smeared particles 8309

In the passive transformation picture

T †(ε)XsT (ε) = Xs + εe−P 2/m2

T †(ε)PT (ε) = P
(4.2)

where T (ε) is the translation operator which translates the state |ψ〉. Expanding T (ε) to first
order and feeding into equation (4.2) we obtain

[Xs,G] = ie−P 2/m2
(4.3)

whereG is the generator of infinitesimal translations. Thus, the momentum is still the generator
of smeared spatial translations. Since these are the same generators as found in ordinary
quantum mechanics, we can conclude by similar reasoning and by Ehrenfest’s theorem that
smeared space translational invariance will ensure the time independence of the momentum.

4.2. Rotational invariance

Let us denote the operator that rotates two-dimensional vectors by R(φ0k̂) for a rotation by φ0

about the z-axis. Let U [R] be the operator associated with this rotation. For an infinitesimal
rotation εzk̂ we set

U [R] = I − iεzLsz (4.4)

where Lsz is the generator of smeared rotations. We can determine Lsz = XsPy − YsPx by
feeding this U [R] into the passive transformation equations for an infinitesimal rotation:

U †[R]XsU [R] = Xs − Ysεz (4.5)

and so on. Lsz is conserved in a problem with rotational invariance if

U †[R]H(Xs, Px;Ys, Py)U [R] = H(Xs, Px;Ys, Py). (4.6)

It follows (by choosing an infinitesimal rotation) that

[Lsz , H ] = 0 or 〈L̇sz〉 = 0 (4.7)

by Ehrenfest’s theorem.

4.3. The eigenvalue problem of Lsz

In the momentum basis the two-dimensional smeared angular momentum operator can be
written as

Lsz → e−p2/2m2

(
i
∂

∂px
e−p2/2m2

py − i
∂

∂py
e−p2/2m2

px

)
(4.8)

where p2 = p2
x + p2

y . This is the correct generalization of the smeared position operator to
higher dimensions (in this case two) as can be seen by letting Xs act on a wavefunction in two
dimensions. We can further simplify the derivatives in Lsz and switch to polar coordinates to
obtain

Lsz → −ie−p2/2m2 ∂

∂pφ
e−p2/2m2

. (4.9)

The eigenvalue problem of Lsz ,

Lszψ(pρ, pφ) = lszψ(pρ, pφ) (4.10)

can be written in the momentum basis as

−ie−p2/2m2 ∂

∂pφ
(ψe−p2/2m2

) = lszψ. (4.11)
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Defining φ = ψe−p2/m2
and using the transformed measure

dpφ = 1

2π

[√
πm

2i
erf(2π i)

]
e−p2

φ/m
2

dr (4.12)

we arrive at

ψ(pρ, pφ) ∼ exp(ilsze
p2
ρ/m

2
r + p2/2m2) (4.13)

where the numerical factor in the measure transformation has been chosen so that as pφ ranges
from 0 to 2π , r also ranges from 0 to 2π . The eigenfunctions are orthogonal with respect to the
transformed measure L2(e−p2

φ/m
2
pρdpρ dr) where the numerical factor has been suppressed.

We observe that lsz seems to be arbitrary and even complex since the range of r is restricted. The
fact that complex eigenvalues enter the solution signals that we are overlooking the Hermiticity
constraint. Imposing this condition we have

〈ψ1|Lsz |ψ2〉 = 〈ψ2|Lsz |ψ1〉∗ (4.14)

which becomes in the momentum basis∫ ∞

0

∫ 2π

0
φ∗

1

(
−i

∂

∂pφ

)
φ2pρ dpρ dpφ =

[ ∫ ∞

0

∫ 2π

0
φ∗

2

(
− i

∂

∂pφ

)
φ1pρ dpρ dpφ

]∗
(4.15)

where φ = ψe−p2/2m2
. If this requirement is to be satisfied by all φ1 and φ2, one can show (by

integrating by parts) that it is enough if each φ(pρ, pφ) obeys

φ(pρ, 0) = φ(pρ, 2π). (4.16)

If we impose this constraint on the Lsz eigenfunctions we find that the eigenvalues lsz have to
obey the following relation:

lsz = e−p2
ρ/m

2
k (4.17)

where k is an integer. The smeared angular momentum is equal to an integral multiple of h̄
times a smearing factor. This is an example of smeared quantization and, as the Compton
wavelength vanishes, we regain the usual relation for ordinary quantized angular momentum.
Having established the Hilbert space representation theory for smeared particles, we now apply
it to our first paradigm example, namely, the smeared harmonic oscillator.

5. Smeared harmonic oscillator

Before we study the quantum mechanical smeared harmonic oscillator let us understand the
classical analogue of such an oscillator. Classically, we can model a smeared particle as a point
mass connected to a nonlinear spring of stiffness constant, say k1. When this spring–mass
system is connected to another linear spring of stiffness constant, say k2 we essentially have
a classical, one-dimensional, smeared oscillator. When the wavelength of oscillation is small
compared to the size of the smeared particle (in this case the length of the nonlinear spring of
stiffness constant k1) the oscillator will exhibit harmonic behaviour since the small oscillations
do not disturb the configuration of the smeared particle. As the wavelength of oscillation
becomes comparable to the size of the smeared particle, anharmonic vibrations set in. Again,
as the wavelength of oscillation becomes much larger than the size of the smeared particle,
the point-particle approximation becomes tenable and harmonic vibrations are recovered. We
would expect the quantum version of the smeared oscillator to exhibit similar behaviour albeit
with quantized energy levels. In the first regime, when the wavelength of oscillation is small
compared to the size of the particle, since small oscillations do not disturb the configuration of
the smeared particle to any appreciable extent, we will obtain the usual quantized energy levels
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of the simple harmonic oscillator. It is in the second and third regimes where we would need
to apply the quantum mechanics of smeared particles. The Hamiltonian for a one-dimensional
smeared harmonic oscillator can be written as

H = P 2

2m
+

1

2
mω2X2

s . (5.1)

Introducing the operator representation for the smeared position and momentum in the
momentum basis and simplifying terms, we obtain

1

2
mω2

[
d2φ

dp2
−

(
p2

m4
− 1

m2

)
φ

]
=

(
p2

2m
− E

)
e2p2/m2

φ (5.2)

where φ = e−p2/m2
ψ , Hψ = Eψ , and φ lies in L2(dp). When the wavelength of oscillation

(the confines) is large compared to the size of the smeared particle, p2/m2 � 1, in which
case we can approximate e2p2/m2 ≈ 1 + 2p2/m2. In this approximation equation (5.2) can be
rewritten as

d2φ

dp2
+ 2m

(
Ẽ − 1

2
m+2

)
φ = 0 (5.3)

where

2mẼ = 2E

mω2
+

1

m2
(5.4)

m2+2 = −4E

m3ω2
+

1

m4
+

1

m2ω2
. (5.5)

This is simply the differential equation for a simple harmonic oscillator in terms of the dummy
energy Ẽ and frequency +. For well behaved solutions we require the quantization condition

Ẽn = (n + 1
2 )+ n = 0, 1, 2, . . . . (5.6)

Re-expressing this relation in terms of the physical energy E and frequency ω and retaining
terms up to o(h̄2), we obtain

En =
(
n +

1

2

)
ω − ω2

2m
n = 0, 1, 2, . . . . (5.7)

As we would expect, the smeared particle exhibits harmonic behaviour when the wavelength of
oscillation is large compared to the size of the particle. In this approximation, the eigenvalue
spectrum of the smeared harmonic oscillator is equivalent to the spectrum of a displaced
simple harmonic oscillator. The shift in the energy spectrum can be understood by observing
that in the classical spring–mass model, the smeared particle (the nonlinear spring) would
undergo compression due to the oscillations of the linear spring, thereby displacing the
equilibrium position. The quantum counterpart exhibits the same behaviour and when ω � m

in equation (5.7), that is, when the point-particle approximation becomes tenable we obtain the
eigenspectrum of the simple harmonic oscillator. In the classical analogue this would mean that,
at sufficiently large oscillation wavelengths, the compression of the nonlinear spring becomes
insignificant. Retaining terms up to o(h̄2), the eigenfunctions of the harmonic oscillator in this
approximation are given by

ψ(p) ∼ ep
2/m2(1− m

2ω )Hn

[√
(mω)−1p

]
(5.8)

where Hn are the Hermite polynomials. Since ψ lies in L2(e−2p2/m2
dp), the eigenfunctions

will be normalizable. By inserting these approximate solutions into the exact differential
equation (5.2) we find that they do not differ by derivative terms and hence they are close in
some sense to the exact solutions.
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If we include higher values of momenta in our approximation and write e2p2/m2 ≈
1 + 2p2/m2 + 2p4/m4, we obtain the differential equation

d2φ

dp2
+ 2m

(
α

2m
− β

2m
p2 − γ

2m
p4

)
φ = 0 (5.9)

where

α = 2E

mω2
+

1

m2
(5.10)

β = −4E

m3ω2
+

1

m4
+

1

m2ω2
(5.11)

γ = 2

m4ω2
− 4E

m5ω2
. (5.12)

This is the differential equation for an anharmonic oscillator. As we would expect when higher
momentum values become important or, equivalently, as the wavelength of oscillation becomes
comparable to the size of the smeared particle, anharmonic vibrations set in. We can compute
the eigenspectrum of the anharmonic oscillator using perturbation theory. We note that the
perturbation expansion breaks down for some large enough n. Retaining terms up to o(h̄2) the
eigenspectrum is found to be

En =
(
n +

1

2

)
ω − ω2

2m
+

3ω2

4m
(1 + 2n + 2n2) n = 0, 1, 2, . . . . (5.13)

Figure 1 shows a plot of the first two anharmonic oscillator eigenfunctions. For comparison
the first two harmonic oscillator eigenfunctions are also shown. The anharmonic oscillator
eigenfunctions have a steeper slope because the particle is placed in a stronger potential as
compared to the harmonic oscillator potential. If we include even higher values of momenta in
our approximation we find that the anharmonicity increases and in the limit of large quantum
numbers our quantum descriptions pass smoothly to their classical counterparts. Therefore,
the quantum mechanics of smeared particles provides a description of the smeared harmonic
oscillator which augments our classical intuition. Such a description could be useful when we
study harmonic excitations of quasiparticles which cannot be localized to arbitrary precision.
The quantum mechanics of smeared particles can also be used to describe compound particles
such as baryons or mesons in situations where their nonzero size matters but the details of
the internal structure do not contribute. One such situation is the description of the nucleon–
nucleon interaction at very short distances which we will now proceed to examine.

6. The Yukawa potential

At present the physics of the nucleon–nucleon interaction can be divided into three major
regions [3]:

(1) the long-distance region r � 2 fm ≈ 1.5m−1
π where one-pion exchange dominates and

the quantitative behaviour of the potential is very well established;
(2) the intermediate region 0.8 � r � 2 fm where the dynamical contributions from two-

pion exchange (effective boson exchange) compete with or exceed the one-pion exchange
potential;

(3) the inner region r � 0.8 fm has complicated dynamics not readily accessible to a
quantitative theoretical description. This region is expected to be influenced by heavy
mesons and/or by quark/gluon degrees of freedom. It is usually approached in a
phenomenological way.
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Figure 1. The first two eigenfunctions of the
anharmonic oscillator (solid curves). For comparison
the first two eigenfunctions of the anharmonic
oscillator are also shown (dashed curves). The
anharmonic oscillator eigenfunctions show a steeper
slope because the particle experiences a stronger
potential.

Moreover, the inner region contains a repulsive hard core of radius 0.6 fm which was first
proposed by Jastrow in 1951 in order to fit nucleon–nucleon scattering data [4]. The presence
of a repulsive nucleon core is necessary to explain the saturation of nuclear forces and its
theoretical origin is unknown. This short range and repulsive nucleon force is believed to be
mediated by an ω meson of mass 782 MeV and the intermediate range, attractive nucleon
force is mediated by a σ meson (effective boson) of mass 550 MeV [5]. Once the masses are
fixed, the coupling constants which measure the strength of the coupling between a meson
and a baryon are chosen to reproduce nucleon–nucleon scattering phase shifts and deuteron
properties. These phenomenological coupling constants [5] are found to be g2

ω/4π = 10.83
and g2

σ /4π = 7.303. It is our objective to theoretically determine the radius of the repulsive
nucleon core and to reproduce the phenomenological ω meson coupling constant using the
quantum mechanics of smeared particles, which becomes relevant to the dynamics in the inner
region due to the delocalization of the nucleon.

In order to reproduce consistent results we will focus attention on the bound state nucleon–
nucleon interaction, namely, the deuteron. The deuterium nucleus (A = 2, Z = N = 1) is
a bound state of the neutron–proton system, into which it may be disintegrated by irradiation
with γ rays of energy above the binding energy [6] of 2.226 MeV. The ground state of the
deuteron is a triplet S state and it has no excited states. The force between the proton and the
neutron can be described in good approximation by a potential energy function of the form

V (r) = −V0
e−r/r0

r/r0
. (6.1)

This is the well known Yukawa potential and is central to the mesonic theory of nuclear forces.
The range of the force r0 is equal to 1/µ, where µ is the mass of the associated meson and
the strength V0, or depth of the potential well, is connected with the strength of the coupling
between the meson and the nucleon field. In the centre-of-mass coordinates the Hamiltonian
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for the S state of the deuteron is

H = p2

2m
+ V (r) (6.2)

where m is the reduced mass of the deuteron and r determines the neutron–proton separation.
For ease of comparison with the quantum mechanics of smeared particles in which the
momentum basis is more convenient, we can transcribe the Hamiltonian to the momentum
basis by virtue of the exchange transformation

r → pr2
0 and p → −r/r2

0 . (6.3)

The exchange transformation is a canonical transformation and does not affect the dynamics [7].
The Hamiltonian in the momentum basis is

H = r2

2mr4
0

+ V (p) (6.4)

where r → i∇p is the position operator and V (p) = −V0e−pr0/pr0. The binding energy
E0 = −2.226 MeV can be estimated by means of the variational principle using the simple
trial wavefunction

ψ(p) = e−αpr0 (6.5)

in which we treat α as a variable parameter. Our choice of the trial wavefunction is motivated
by the fact that we expect the ground state wavefunction to have no angular momentum, no
nodes, and for pψ(p) to vanish as p → ∞, as required for bound states. The variational
method determines the energy as

E = 〈ψ |H |ψ〉
〈ψ |ψ〉 . (6.6)

The energy E serves as an upper bound on the ground state energy E0. If we substitute
E0 = −2.226 MeV for E we can perform an approximate calculation of the relation between
V0 and r0 (range–depth relation) that must hold if the potential function V (p) is to give the
value E0 = −2.226 MeV for the binding energy. Figure 2 shows a plot of the range–depth
relation for the Yukawa potential (deuteron) as determine by this method. By comparing the
values of V0 for various values of r0 with the results of an exact calculation using numerical
integration we are able to estimate the accuracy of our approximate result. The approximate
result is within a few per cent of the exact result and the error decreases with increasing r0 [6].
Therefore, our choice of the trial wavefunction is justified.

Let us now analyse the same potential problem using the quantum mechanics of smeared
particles. In the momentum basis the smeared Hamiltonian for the S state of the deuteron is

H = r2
s

2mr4
0

+ V (p) (6.7)

where

rs → ie−p2/2m2∇pe−p2/2m2
(6.8)

is the smeared position operator which now determines the neutron–proton separation. Figure 3
shows a plot of the S-state eigenfunctions as a function of momentum for r0 = 1.43 fm, which
correspond to a π meson of mass 139.6 MeV, and for r0 = 0.3596 fm, which correspond to a
σ meson of mass 550 MeV. The eigenfunctions obtained from ordinary quantum mechanics
are also shown for comparison. The eigenfunctions obtained from the quantum mechanics
of smeared particles are pushed out in comparison to the usual eigenfunctions, implying
that there is a repulsive component to the potential which has the effect of pushing out the
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Figure 2. The range–depth relation obtained by using a variational approximation.

eigenfunctions as at the edge of an infinite well (compare with figure 1). By examining the
plots of φ(p) = e−p2/m2

ψ(p) (figure 4 shows one such plot for r0 = 1.43 fm) where ψ(p)
are the eigenfunctions obtained from the quantum mechanics of smeared particles, we observe
that φ(p) lies in L2(d3p). Therefore, the eigenfunctions obtained from the smeared particle
analysis are normalizable with respect to L2(e−2p2/m2

d3p). This motivates us to choose as
our trial wavefunction

ψ(p) = ep
2/m2−αpr0 . (6.9)

The normalizability criterion in this measure ensures that

e−p2/m2
pψ(p) → 0 as p → ∞ (6.10)

as required for bound states (and as is the case with our trial wavefunction). Furthermore,
when the confines are large (p2/m2 � 1),ψ(p) in equation (6.9) passes smoothly into the trial
wavefunction we used when we applied ordinary quantum mechanics and which had yielded
an accurate range–depth relation. Hence, our choice of the trial wavefunction is justified and,
with the given volume element, we can determine the approximate range–depth relation that
must hold if the potential function V (p) is to give the valueE0 = −2.226 MeV for the binding
energy. Numerical calculations performed in Mathematica reveal the range–depth relation
shown in figure 5. The strength of the potential or depth of the well V ′

0 in figure 5 is lower
than the strength of the potential V0 obtained from ordinary quantum mechanics (figure 2)
particularly for smaller values of r0. The existence of a repulsive component to the potential
which we have already observed from a plot of the eigenfunctions shown in figure 3 is verified.
Moreover, the depth of the well V ′

0 in figure 5 is negative for r0 � 0.563 fm. This implies the
existence of a repulsive nucleon core with a radius rc = 0.563 fm, which is consistent with
the phenomenologically obtained value of 0.6 fm.

Let us model the effective nucleon–nucleon interaction by a potential of the form

V (r) = −V0
e−r/r0

r/r0
+ V1

e−r/r1

r/r1
(6.11)

where r0 = 0.3596 fm corresponding to σ meson exchange (attraction) and r1 = 0.2529 fm
corresponding to ω meson exchange (repulsion). This potential describes the main qualitative
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Figure 3. The solid curves show the eigenfunctions obtained from a smeared particle analysis.
The top figure shows the eigenfunction at a range of r0 = 1.43 fm and the bottom figure shows
the eigenfunction at a range of r0 = 0.3596 fm. For comparison the eigenfunctions obtained from
ordinary quantum mechanics are also shown (dashed curves). The repulsion experienced by the
nucleons, which is important at short distances, has the effect of pushing out the eigenfunctions.

features of the nucleon–nucleon interaction: a short-range repulsion between baryons coming
from ω exchange and an intermediate-range attraction coming from σ exchange [5]. The
repulsive component of the effective nucleon–nucleon interaction must be held accountable
for the drop in the well depth from V0 to V ′

0, which is observed at r0 = 0.3596 fm. Since the
ω exchange occurs at a range of r1 = 0.2529 fm we require that

V (r = r1) = −V ′
0

e−r1/r0

r1/r0
. (6.12)

The quantities V0 = 660.77 MeV and V ′
0 = −81.0 MeV can be computed numerically or can

be read from figures 2 and 5. A simple calculation yields the strength of the repulsive potential
as V1 = 1419.07 MeV. Figure 6 shows a plot of the effective nucleon–nucleon interaction.
The potential is attractive at large distances and repulsive for small r . In terms of the coupling
constants we can rewrite the effective nucleon–nucleon interaction as

V (r) = −g2
σ

4π

e−r/r0

r
+
g2
ω

4π

e−r/r1

r
. (6.13)

Comparison with equation (6.11) yields g2
σ /4π = 1.20 and g2

ω/4π = 1.815. Note that we
are working in units with h̄ = c = 1. These theoretically obtained values of the coupling
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Figure 4. The plot of φ(p) = e−p2/m2
ψ(p) where ψ(p) is the wavefunction obtained from the

quantum mechanics of smeared particles at r0 = 1.43 fm.
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Figure 5. The range–depth relation obtained from a smeared particle analysis using the variational
method. The strength of the potential is lowered, particularly for smaller values of r0, indicating
the existence of a repulsive component to the potential.

constants will differ from the phenomenological coupling constants because in our simple
Yukawa model of the effective nucleon–nucleon interaction we have neglected important
tensor interactions and spin–orbit terms which contribute to the form of the potential [3].
However, the ratio of the theoretical coupling constants g2

ω/g
2
σ = 1.512, which compares

the relative strength of the repulsive coupling and the attractive coupling, must be equal to
the ratio of the phenomenologically determined coupling constants g2

ωp
/g2

σp
in order for our

simple Yukawa model to successfully describe the effective nucleon–nucleon interaction and
to ensure the stability of the deuteron. Using the value g2

σp
/4π = 7.303 and multiplying by

the ratio 1.512 we obtain the value of the phenomenological coupling constant of the ω meson
as g2

ωp
/4π = 11.03. This value of the coupling constant differs by 1.85% from the value

obtained from fitting the nucleon–nucleon scattering phase shifts and deuteron properties,
which is equal to 10.83. Therefore, the quantum mechanics of smeared particles leads us to
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Figure 6. The effective nucleon–nucleon interaction.

values of the ω meson coupling constant and of the repulsive core radius which are consistent
with the phenomenologically obtained values.

7. Conclusion

In this paper we have developed the Hilbert space representation theory of the quantum
mechanics of smeared particles and demonstrated the invariance of such a mechanics under
spatial translations and rotations. We have then applied this formalism to the smeared harmonic
oscillator and the Yukawa potential. The results of the smeared harmonic oscillator are
consistent with our classical intuition and, in the case of the Yukawa potential, we obtain
accurate theoretical predictions of the hitherto phenomenologically obtained nucleon core
radius and the ω meson coupling constant. In an age of increasing miniaturization, it is
conceivable that as the confines of various quantum systems become comparable to the
smearing of the confined particles, the quantum mechanics of smeared particles will play
an important role in determining the dynamics.
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